NegasiKonjungsi Pernyataan majemuk dengan konjungsi ditandai dengan adanya kata penghubung dan, tetapi, seandainya, walaupun, seperti, bahwa, walaupun, supaya. Nilai kebenaran dari konjungsi hanya akan bernilai benar (B) jika semua proposisi tunggalnya bernilai benar, selain itu nilainya salah (S).
Saturday january 10, 2015 jika p adalah proposisi, negasi dari p dilambangkan dengan ~p atau p. Tentukan negasi atau ingkaran pernyataan majemuk berikut ini : B) ½ adalah bilangan bulat. C) Anda Naik Jabatan Jika Anda Punya. 2 ) tuliskan negasi dari setiap implikasi di bawah ini : A) 19 adalah bilangan prima.
Tentukannegasi dari pernyataan di bawah ini !a. Semua manusia akan mati.b. 5 adalah bilangan ganjil.c. Tidak ada murid Cara Menentukan Negasi Implikasi dan Biimplikasi Soal dan Pembahasan - Logika Matematika - Mathcyber1997 Kumpulan Contoh Soal Ingkaran/Negasi dalam Logika Matematika dan Pembahasannya | Blog Matematika
Contohsoal logika matematika SMA dan pembahasan ini mencakup tentang negasi atau ingkaran suatu pernyataan penggabungan pernyataan majemuk dengan konjungsi disjungsi implikasi biimplikasi dan penarikan kesimpulan dari beberapa premis dan pernyataan yang setara. Bagi gengs yang kurang mengerti bisa baca rangkuman materinya plus ada soal latihannya.
Soal Tentukan negasi atau ingkaran dari pernyataan-pernyataan di bawah ini: a) Bogor hujan lebat dan Jakarta tidak banjir. b) Hari ini tidak mendung dan Budi membawa payung Pembahasan: Seperti pada soal-soal sebelumnya, maka negasi dari konjungsi adalah sebagai berikut.
poster tentang dampak siklus air bagi kehidupan. 0% found this document useful 1 vote10K views6 pagesDescriptionLembar Kerja Kelompok Pernyataan Majemuk Konjungsi, Disjungsi, Implikasi, Biimplikasi dan Negasi dari Pernyataan TitleLOGIKA MATEMATIKA Pernyataan Majemuk dan Negasi Pernyataan MajemukCopyrightŠ Š All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 1 vote10K views6 pagesLOGIKA MATEMATIKA Pernyataan Majemuk Dan Negasi Pernyataan MajemukOriginal TitleLOGIKA MATEMATIKA Pernyataan Majemuk dan Negasi Pernyataan MajemukDescriptionLembar Kerja Kelompok Pernyataan Majemuk Konjungsi, Disjungsi, Implikasi, Biimplikasi dan Negasi dari Pernyataan descriptionJump to Page You are on page 1of 6 You're Reading a Free Preview Pages 4 to 5 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Blog Koma - Artikel yang masih merupakan submateri "logika matematika" yang akan kita bahas pada artikel ini adalah Pernyataan Majemuk Logika Matematika. Pada artikel sebelumnya kita telah mempelajari submateri "pernyataan dan kalimat terbuka" dimana pernyataan dapat dibedakan menjadi pernyataan tunggal dan pernyataan majemuk. Kumpulan lebih dari satu pernyataan tunggal kita sebut sebagai Pernyataan Majemuk Logika Matematika yang akan dihubungkan dengan kata penghubung seperti "dan", "atau", "jika ... maka ... ", dan "... jika dan hanya jika ...". Pada submateri Pernyataan Majemuk Logika Matematika ini, kita juga akan mempelajari nilai kebenaran dari pernyataan majemuk tersebut yang akan kita dapftar dalam sebuah tabel yang biasa kita sebut "tabel kebenaran" dari pernyataan majemuknya. Untuk memudahkan, kita harus bisa mengubah setiap pernyataan tunggal dengan notasi-notasi yaitu biasanya dengan huruf kecil. Berikut penjelasan Pernyataan Majemuk Logika Matematika secara lebih mendetail yang dilengkapi dengan contohnya. Pengertian Pernyataan Majemuk Pernyataan majemuk adalah gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung. Ada empat jenis kata hubung yang kita gunakan yaitu "dan", "atau", "jika ... maka ...." , "... jika dan hanya jika ..." . Keemepat kata penghubung ini juga biasa disebut sebagai operasi dalam logika matematika. Nilai kebenaran dari suatu pernyataan majemuk ditentukan oleh nilai kebenaran dari masing-masing pernyataan tunggalnya dan kata hubung apa yang digunakan. Pernyataan Majemuk Konjungsi "dan" Konjungsi adalah pernyataan majemuk yang menggunakan kata hubung "dan". Kata hubung "dan" disajikan dengan lambang "$\wedge$". Kata hubung "dan" pada konjungsi juga setara dengan "meskipun/tetapi/walaupun". Konjungsi dari dua pernyataan tunggal $p$ dan $q$ dinotasikan sebagai "$ p \wedge q $" yang dibaca "$p$ dan $q$". Suatu konjungsi akan bernilai BENAR jika kedua pernyataan pembentuknya bernilai benar dan bernilai SALAH jika salah satu atau keduanya bernilai salah. Perhatikan tabel kebenaran konjungsi di bawah ini. Contoh soal pernyataan majemuk Konjungsi "dan" 1. Berikut adalah contoh pernyataan majemuk dengan operasi konjungsi a. Indonesia adalah negara Republik dan berpenduduk 200 juta jiwa. b. 2 adalah bilangan prima dan 2 habis dibagi 4. c. Gajah berkaki empat dan dapat terbang. d. Bumi itu bulat dan bumi mengitari matahari. e. Manusia bernafas dengan paru-paru dan termasuk herbivora. f. Segitiga memiliki empat sisi dan jumlah ketiga sudutnya $ 180^\circ $. 2. Tentukan nilai kebenaran dari bentuk konjungsi Lombok adalah pulau terluas di Indonesia dan 5 adalah bilangan prima. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ Lombok adalah pulau terluas di Indonesia bernilai Salah $ q $ 5 adalah bilangan prima bernilai benar. Berdasarkan tabel kebenaran konjungsi $ p \wedge q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = S , \tau q = B $ sehingga $ \tau p \wedge q = S $. Pernyataan Majemuk Disjungsi "atau" Disjungsi adalah pernyataan majemuk dengan kata hubung "atau". Disjungsi dari pernyataan $p$ dan $q$ dinotasikan $p \vee q $ dan dibaca "$p$ atau $q$". Suatu disjungsi memikili nilai kebenaran SALAH jika kedua pernyataan pembentuknya bernilai salah. Akan tetapi, berniali BENAR jika salah satu atau keduanya bernilai benar. Perhatikan tabel kebenaran disjungsi di bawah ini! Contoh soal pernyataan majemuk Disjungsi "atau" 3. Berikut adalah contoh pernyataan majemuk disjungsi a. Bali adalah privinsi paling timur di Indonesia atau Lombok adalah pulau terkecil. b. 3 bilangan prima atau 5 bilangan prima genap. c. Pak Budi berlangganan harian Kompas atau Kedaulatan Rakyat. d. Wati pergi ke perpustakaan atau ke kantin. e. Saya rajin belajar atau saya lulus UN. f. $ 2 + 3 \leq 4 $ atau Surabaya adalah kota pahlawan. 4. Tentukan nilai kebenaran dari bentuk disjungsi Denpasar ibukota provinsi Bali atau kota bandung ada di Jawa Timur. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ Denpasar ibukota provinsi Bali bernilai Benar $ q $ kota bandung ada di Jawa Timur bernilai Salah. Berdasarkan tabel kebenaran disjungsi $ p \vee q $ bernilai Benar. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \vee q = B $. Catatan *. Bentuk disjungsi dibagi menjadi dua yaitu disjungsi inklusif dan disjungsi eksklusif. *. disjungsi inklusif adalah disjungsi yang sudah kita bahas di atas. *. disjungsi eksklusif adalah disjungsi yang bernilai benar jika hanya ada salah satu pernyataan yang benar, dilambangkan dengan $ \oplus $ atau $ \underline{\vee} $ . *. Kalau tidak dikatakan apa-apa, maka dalam Matematika biasanya yang dimaksud adalah disjungsi inklusif. Pernyataan Majemuk Implikasi "jika ... maka ..." Implikasi adalah pernyataan majemuk dengan kata hubung "jika .... maka....". Implikasi dari pernyataan $p$ dan $q$ dinotasikan dengan $p \Rightarrow q$ yang dibaca "jika $p$, maka $q$" atau "$p$ hanya jika $q$" atau "$p$ syarat cukup untuk $q$" atau "$q$ syarat perlu untuk $p$". Dari implikasi $ p \Rightarrow q$ , $p$ disebut anteseden atau sebab atau hipotesa, $q$ disebut konsekuen atau kesimpulan atau konklusi. Pernyataan implikasi $ p \Rightarrow q $memikili nilai kebenaran SALAH, jika anteseden $p$ bernilai benar dan konsekuen $q$ bernilai salah. Perhatikan tabel kebenaran implikasi di bawah! Contoh soal pernyataan majemuk Implikasi "jika ... maka ..." 5. Berikut adalah contoh pernyataan majemuk implikasi a. Jika turun hujan, maka jalanan akan basah. b. Jika Intan adalah seorang pria, maka ia akan mempunyai kumis. c. Jika bumi berputar dari timur ke barat, maka matahari akan terbit disebelah barat. d. Jika $ a > b $ , maka $ a + c > b + c $ e. Jika $ 4 -5 $ f. Jika $ x > 12 $ , maka $ x > 4 $. 6. Tentukan nilai kebenaran dari bentuk implikasi Jika 2 adalah bilangan prima genap, maka 2 adalah bilangan ganjil. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ 2 adalah bilangan prima genap bernilai Benar $ q $ 2 adalah bilangan ganjil bernilai Salah. Berdasarkan tabel kebenaran implikasi $ p \Rightarrow q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \Rightarrow q = S $. 7. Tentukan manakah yang merupakan syarat perlu dan syarat cukup dari bentuk implikasi berikut ini Jika $x$ adalah bilangan genap, maka $x$ habis dibagi 2. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ $x$ adalah bilangan genap. $ q $ $x$ habis dibagi 2. -. $ p $ adalah sebagai syarat cukup. -. $ q $ adalah sebagai syarat perlu. Dapat kita tulis secara lengkap yaitu -. Pertama "$x$ adalah bilangan genap" merupakan syarat cukup untuk "$x$ habis di bagi 2". -. Kedua "$x$ habis di bagi 2" merupakan syarat perlu agar "$x$ adalah bilangan genap". Catatan *. Dalam bahasa sehari-hari kita memakai implikasi dalam bermacam-macam arti, misalnya a. Untuk menyatakan suatu syarat Contoh "Jika kamu tidak membeli karcis, maka kamu tidak akan diperbolehkan masuk". b. Untuk menyatakan suatu hubungan sebab akibat Contoh "Jika kehujanan, maka Iwan pasti sakit". c. Untuk menyatakan suatu tanda Contoh "Jika bel berbunyi, maka mahasiswa masuk ke dalam ruang kuliah". *. Penjelasan syarat cukup dan syarat cukup Bentuk $ A \Rightarrow B $ -. A diatas disebut syarat cukup untuk B, karena bila A terjadi benar maka B juga berjadi benar. -. B juga disebut syarat perlu untuk A. Suatu syarat disebut syarat perlu bila tidak terpenuhinya salahnya syarat tersebut mengakibatkan tidak terjadinya apa yang disyaratkan. Pernyataan Majemuk Biimplikasi "... jika dan hanya jika ..." Biimplikasi adalah pernyataan majemuk dengan kata hubung "....jika dan hanya jika...." dan dilambangkan $\Leftrightarrow$. Biimplikasi dari pernyataan $p$ dan $q$ ditulis $p \Leftrightarrow q $ yang dibaca "$p$ jika dan hanya jika $q$" atau "jika $p$ maka $q$ dan jika $q$ maka $p$". Biimplikasi memikili nilai kebenaran BENAR, jika anteseden $p$ dan konsekuen $q$ memiliki nilai kebenaran yang sama. Perhatikan tabel kebenaran biimplikasi di bawah! Contoh soal pernyataan majemuk Biimplikasi "... jika dan hanya jika ..." 8. Berikut contoh pernyataan majemuk biimplikasi a. Matahari terbit jika dan hanya jika bumi berotasi. b. Indonesia Merdeka jika dan hanya jika Jepang mengalahkan sekutu. c. $ a + b = c $ jika dan hanya jika $ c - b = a $ d. hujan turun jika dan hanya jika terjadi penguapan air laut. e. $ x^2 = 4 $ jika dan hanya jika $ x = -2 $ atau $ x = 2 $. 9. Tentukan nilai kebenaran dari bentuk Biimplikasi $ 2 \times 4 = 8 $ jika dan hanya jika 4 bilangan prima. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ $ 2 \times 4 = 8 $ bernilai Benar $ q $ 4 bilangan prima bernilai Salah. Berdasarkan tabel kebenaran biimplikasi $ p \Leftrightarrow q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \Leftrightarrow q = S $. Demikian pembahasan materi Pernyataan Majemuk Logika Matematika dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan logika matematika yaitu "Konvers, Invers, dan Kontraposisi".
Ilustrasi Negasi Pernyataan Majemuk, sumber foto J. Thomas by itu negasi pertanyaan majemuk? Dalam logika matematika, negasi merupakan fakta sebaliknya dari pernyataan awal. Ciri khas dari pernyataan negasi umumnya ditandai dengan adanya imbuhan kata tidak atau bukan. Contohnya, terdapat suatu pernyataan Andi dapat mengerjakan soal matematika dengan baik. Negasi dari kalimat tersebut ialah Andi tidak bisa mengerjakan soal matematika dengan baik. Pernyataan dan negasi mempunyai nilai kebenaran yang bertolak belakang. Jadi, apabila nilai kebenaran suatu pernyataan benar, artinya negasinya salah. Begitu pula jika nilai kebenaran suatu pernyataan salah, otomatis negasinya Pernyataan Majemuk dalam Logika MatematikaBerikut adalah jenis-jenis Negasi pertanyaan majemuk dalam matematika yang perlu Negasi KonjungsiIlustrasi Negasi Pernyataan Majemuk, sumber foto Joel Muniz by dari Buku Penunjang Bahan Ajar Matematika SMK Kelas XI oleh Yuliansyah 2019, negasi konjungsi merupakan pernyataan majemuk yang ditandai dengan kata penghubung dan, seandainya, tetapi, seperti, walaupun, bahwa, kebenaran negasi konjungsi bisa dikatakan benar B apabila seluruh proposisi tunggalnya bernilai benar, sehingga selain itu bernilai salah S. Adapun tanda konjungsi penghubung dua proposisi tunggal yaitu â§ atau &.2. Negasi DisjungsiNegasi disjungsi merupakan pernyataan majemuk yang ditandai pemakaian kata sebagai penghubungnya. Tanda disjungsi yang menghubungkan dua proposisi tunggal yaitu â¨.Nilai kebenaran suatu disjungsi hanya bernilai salah S apabila seluruh proposisi tunggalnya salah, sehingga selain itu nilainya dikatakan benar B.3. Negasi ImplikasiNegasi implikasi merupakan pernyataan majemuk yang ditandai dengan kata penghubung 'jika' dan 'maka' yang disimbolkan dengan garis lurus sebuah anak panah di ujung kanan tanda implikasi â.Nilai kebenaran suatu implikasi hanya bernilai salah S apabila antesedennya benar dan konsekuennya salah, sehingga selain itu akan dinilai benar B.4. Negasi BiimplikasiNegasi biimplikasi merupakan dua proposisi tunggal yang terhubung oleh kata penghubung 'jika' dan 'hanya jika' atau 'bila' dan 'hanya bila'.Simbol dari biimplikasi berupa garis lurus dengan dua buah anak di kedua ujungnya simbol biimplikasi â.Nilai kebenaran suatu biimplikasi hanya bernilai benar B apabila kedua proposisi tunggal bernilai setara, baik itu benar B ataupun salah S. Suatu biimplikasi hanya akan bernilai salah S apabila proposisi tunggalnya mempunyai nilai kebenaran menyimak penjelasan di atas, bisa dipahami bahwa negasi pernyataan majemuk dalam pelajaran matematika terdiri dari empat jenis, yakni negasi konjungsi, negasi disjungsi, negasi implikasi, dan negasi biimplikasi. DLA
Sobat Zenius tahu gak sih kalau dalam pelajaran Matematika, elo bukan hanya mempelajari angka dan perhitungan saja. Namun, terdapat materi yang dipelajari selain hitung-menghitung, yaitu materi logika matematika. Apa itu logika matematika? Pasti itu merupakan salah satu pertanyaan saat elo pertama kali mengetahui kalau ternyata Matematika juga memiliki materi selain hitung-hitungan. Nah, untuk menjawab pertanyaan tersebut, di artikel kali ini, gue bakalan menjelaskan mengenai definisi dan topik materi tentang logika matematika dengan lebih detail. Yuk, simak ulasannya di bawah ini. Illustrasi berpikir menggunakan logika Dok. Zenius Pengertian Logika MatematikaPernyataan Ingkaran/Negasi ~Pernyataan Majemuk Pengertian Logika Matematika Sebelum membahas lebih lanjut mengenai topik dalam materi ini, ada baiknya elo tahu pengertian logika matematika terlebih dahulu. Logika matematika adalah cara berpikir atau bisa dikatakan sebagai landasan tentang bagaimana cara kita mengambil kesimpulan dari suatu keadaan atau kondisi tertentu. Jadi, dengan mempelajari materi ini, elo bakal bisa berpikir dengan lebih kritis dan rasional sehingga nantinya keputusan yang diambil lebih objektif dan tidak bias. Nah, karena elo sudah tahu apa itu logika matematika, selanjutnya, gue bakal bahas lebih detail mengenai topik-topik dalam materi ini yang mencakup pernyataan, ingkaran, konjungsi, disjungsi, implikasi, dan biimplikasi lengkap dengan tabel kebenaran, simbol, dan contoh logika matematika dari setiap topik tersebut. Check it out! Pernyataan Pada dasarnya, pernyataan logika matematika merupakan suatu kalimat yang bernilai benar ataupun salah, namun tidak keduanya. Sedangkan, suatu kalimat dikatakan bukan pernyataan jika kita tidak dapat menentukan apakah kalimat tersebut benar atau salah atau mengandung pengertian relatif. Terdapat dua jenis pernyataan, yaitu pernyataan tertutup dan pernyataan terbuka. Pernyataan tertutup merupakan pernyataan yang sudah bisa dipastikan nilai kebenarannya, sedangkan pernyataan terbuka yaitu pernyataan yang belum bisa dipastikan nilai kebenarannya. Contoh 8 + 2 = 10 pernyataan tertutup yang bernilai benar4 Ă 6 = 20 pernyataan tertutup yang bernilai salah5a + 10 = 40 pernyataan terbuka, karena harus dibuktikan kebenarannyaJarak Jakarta-Bogor adalah dekat bukan pernyataan, karena dekat itu relatif Ingkaran/Negasi ~ Ingkaran didefinisikan sebagai sebuah pernyataan yang memiliki nilai kebenaran yang berlawanan dengan pernyataan semula. Berikut adalah simbol dan tabel kebenaran ingkaran/negasi. p~pBSSB Artinya, jika suatu pertanyaan p bernilai benar B, maka ingkaran q akan bernilai salah S. Begitu pula sebaliknya. Contoh p Semua murid lulus ujian ~p Ada murid yang tidak lulus ujian Pernyataan Majemuk Pernyataan majemuk merupakan pernyataan gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung. Pernyataan majemuk di dalam logika matematika terdiri dari disjungsi, konjungsi, implikasi, dan biimplikasi. Konjungsi â§ Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung danâ sehingga membentuk pernyataan majemuk p dan qâ yang disebut konjungsi yang dilambangkan dengan âpâ§qâ. Berikut adalah simbol dan tabel kebenaran konjungsi. pqpâ§qBBBBSSSBSSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep konjungsi akan bernilai benar jika dan hanya jika kedua pernyataan p dan q benar. Contoh Budi sudah makan belajar dan makan. Misalkan, untuk dapat diizinkan bermain oleh Ibu, Budi harus memenuhi kondisi di atas. Jika satu saja atau bahkan kedua pernyataan tersebut dilanggar, maka Budi tidak diizinkan untuk bermain. Disjungsi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung atauâ sehingga membentuk pernyataan majemuk p atau qâ yang disebut disjungsi yang dilambangkan dengan âp ⨠qâ. Berikut adalah simbol dan tabel kebenaran disjungsi. pqpâ¨qBBBBSBSBBSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep disjungsi hanya akan bernilai salah jika kedua pernyataan p dan q salah. Contoh Bandung atau Palembang adalah kota yang terletak di Pulau Jawa. Pernyataan Bandung adalah kota yang terletak di Pulau Jawa adalah benar. Pernyataan Palembang adalah kota yang terletak di Pulau Jawa adalah salah. Sehingga pernyataan Bandung atau Palembang adalah kota yang terletak di Pulau Jawa bernilai benar. Implikasi âš Implikasi bisa dipandang sebagai hubungan antara dua pernyataan di mana pernyataan kedua merupakan konsekuensi logis dari pernyataan pertama. Implikasi ditandai dengan notasi âšâ. Misalkan p, q adalah pernyataan, implikasi berikut p âš q dibaca jika p maka qâ. Berikut adalah simbol dan tabel kebenaran disjungsi. pqpâqBBBBSSSBBSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep implikasi akan bernilai salah jika dan hanya jika sebab bernilai benar namun akibat bernilai salah. Selain itu implikasi bernilai benar. Contoh Jika Budi sembuh maka Budi akan sekolah Jika betul Budi sembuh lalu Budi masuk sekolah, Budi telah melakukan hal yang benar. Namun jika Budi sembuh namun dia tidak masuk sekolah, Budi telah berbuat salah karena mengingkari janjinya. Lalu, bagaimana jika Budi belum sembuh? Perhatikan bahwa Budi hanya berjanji masuk sekolah jika dia sembuh. Akibatnya jika dia masih belum sembuh, tidak masalah bagi Budi untuk masuk sekolah ataupun tidak karena dia tidak melanggar janjinya. Biimplikasi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung jika dan hanya jikaâ sehingga membentuk pernyataan majemuk p jika dan hanya jika qâ yang disebut biimplikasi yang dilambangkan dengan âp â qâ. Berikut adalah simbol dan tabel kebenaran biimplikasi pqpâqBBBBSSSBSSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep biimplikasi akan bernilai benar jika sebab dan akibatnya pernyataan p dan q bernilai sama. Baik itu sama-sama benar, atau sama-sama salah. Contoh Ayah mendapatkan gaji jika dan hanya jika ayah bekerja. Jika ayah mendapatkan gaji maka ayah bekerja dan jika ayah telah bekerja maka ayah akan mendapat gaji. Sebaliknya, jika ayah tidak mendapatkan gaji maka ayah sedang tidak bekerja dan jika ayah tidak bekerja maka ayah tidak akan mendapat gaji. Nah, Sobat Zenius apa sudah dapat memahami materi tentang logika matematika dengan baik? Selanjutnya, gue bakal kasih link buat elo mengasah pemahaman melalui latihan soal di sini. Sekian artikel tentang rangkuman materi logika matematika. Semoga artikel ini bermanfaat dan menambah wawasan elo. Jangan lupa buat mengerjakan latihan soalnya, ya! Berani ngetes skill matematika? Nih, cobain Zencore! Dengan fitur adaptive learning, elo bisa tau seberapa jago kemampuan fundamental lewat kuis CorePractice, sekaligus upgrade otak biar makin cerdas! Ketuk banner di bawah buat cobain! Nggak cuma kuis, kalau elo berlangganan paket belajar Zenius elo bakal dapat akses ke ribuan live class asik bersama para tutor berpengalaman. Klik di bawah ini ya untuk pengalaman belajar yang lebih seru! Tonton Video Pembahasan Tentang Logika Matematika dari Zenius Materi Matematika Kalimat-kalimat Logika Materi Matematika Hubungan Antar Kalimat Materi Matematika Pengambilan Kesimpulan Originally published October 26, 2019Updated by Ni Kadek Namiani Tiara Putri â SEO Writer Intern Zenius
Blog Koma - Setelah mempelajari "pernyataan majemuk yang ekuivalen", pada artikel ini kita lanjutkan dengan pembahasan materi Negasi atau Ingkaran Pernyataan Majemuk yang merupakan submateri dari "logika matematika". "pernyataan majemuk" terdiri dari disjungsi, konjungsi, implikasi, dan biimplikasi. Kita akan mencari semua bentuk Negasi atau Ingkaran Pernyataan Majemuk ini. Untuk memudahkan mempelajari materi Negasi atau Ingkaran Pernyataan Majemuk ini, sebaiknya kita menguasai materi sebelumnya yaitu "negasi atau ingkaran dari suatu pernyataan", "pernyataan berkuantor dan ingkarannya", "pernyataan majemuk", dan "ekuivalensi pernyatan majemuk". Kebanyakan soal-soal yang ada biasanya dalam bentuk kalimat, sehingga kita harus mengubahnya dulu dengan memisalkan dengan huruf-huruf kecil yang mewakili pernyataan-pernyataan tunggal. Berikut materi Negasi atau Ingkaran Pernyataan Majemuk secara detail dan diikuti dengan contohnya. Negasi atau Ingkaran Pernyataan Majemuk Negasi atau ingkaran dari pernyataan majemuk untuk disjungsi, konjungsi, implikasi, dan biimplikasi $ \sim p \wedge q \equiv \sim p \, \vee \sim q $ $ \sim p \vee q \equiv \sim p \, \wedge \sim q $ $ \sim p \Rightarrow q \equiv p \, \wedge \sim q $ $ \sim p \Leftrightarrow q \equiv p \Leftrightarrow \sim q \, $ atau $ \sim p \Leftrightarrow q \equiv \sim p \Leftrightarrow q $ Contoh soal Negasi atau Ingkaran Pernyataan Majemuk 1. Tentukan negasi atau ingkaran pernyataan majemuk berikut ini a. Hari ini hujan atau cuaca cerah. b. Budi lulus SMA dan melanjutkan kuliah kedokteran. c. Jika Iwan ingin menjadi hakim, maka ia harus kuliah jurusan hukum. d. Wati juara kelas jika dan hanya jika wati cerdas. Penyelesaian a. Hari ini hujan atau cuaca cerah. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{hari ini hujan}}_{p} \, \underbrace{\text{atau}}_{\vee} \, \underbrace{\text{cuaca cerah}}_{q} \, \equiv p \vee q $ . Artinya $ p $ mewakili hari ini hujan $ q $ mewakili cuaca cerah. *. Negasi dari $ p \vee q $ $ \sim p \vee q \equiv \sim p \, \wedge \sim q $ Dibaca "hari ini tidak hujan dan cuaca tidak cerah" b. Budi lulus SMA dan melanjutkan kuliah kedokteran. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Budi lulus SMA}}_{p} \, \underbrace{\text{dan}}_{\wedge} \, \underbrace{\text{melanjutkan kuliah kedokteran}}_{q} \, \equiv p \wedge q $ . Artinya $ p $ mewakili Budi lulus SMA $ q $ mewakili melanjutkan kuliah kedokteran. *. Negasi dari $ p \wedge q $ $ \sim p \wedge q \equiv \sim p \, \vee \sim q $ Dibaca "Budi tidak lulus SMA atau Budi tidak melanjutkan kuliah kedokteran" c. Jika Iwan ingin menjadi hakim, maka ia harus kuliah jurusan hukum. *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Iwan ingin menjadi hakim}}_{p} \, $ maka $ \, \underbrace{\text{ia harus kuliah jurusan hukum}}_{q} \, \equiv p \Rightarrow q $ . Artinya $ p $ mewakili Iwan ingin menjadi hakim $ q $ mewakili ia harus kuliah jurusan hukum. *. Negasi dari $ p \Rightarrow q $ $ \sim p \Rightarrow q \equiv p \, \wedge \sim q $ Dibaca "Iwan ingin menjadi hakim dan ia tidak harus kuliah jurusan hukum " d. Wati juara kelas jika dan hanya jika wati cerdas. *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Wati juara kelas}}_{p} \, $ jika dan hanya jika $ \, \underbrace{\text{wati cerdas}}_{q} \, \equiv p \Leftrightarrow q $ . Artinya $ p $ mewakili Wati juara kelas $ q $ mewakili cuaca cerah. *. Negasi dari $ p \Leftrightarrow q $ $ \sim p \Leftrightarrow q \equiv p \Leftrightarrow \sim q $ Dibaca "Wati juara kelas jika dan hanya jika wati tidak cerdas". atau $ \sim p \Leftrightarrow q \equiv \sim p \Leftrightarrow q $ Dibaca "Wati tidak juara kelas jika dan hanya jika wati cerdas". 2. Tentukan negasi atau ingkaran dari pernyataan majemuk "Jika Intan rajin belajar, maka ia lulus dan mendapat hadiah". Penyelesaian *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Intan rajin belajar}}_{p} \, $ maka $ \, \underbrace{\text{ia lulus}}_{q} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{mendapat hadiah}}_{r} \, \equiv p \Rightarrow q \wedge r $ . Artinya $ p $ mewakili Intan rajin belajar $ q $ mewakili ia lulus. $ r $ mewakili mendapat hadiah. *. Negasi dari $ p \Rightarrow q \wedge r $ $ \sim p \Rightarrow q \wedge r \equiv p \, \wedge \sim q \wedge r \equiv p \, \wedge \sim q \vee \sim r $ Dibaca "Intan rajin belajar dan ia tidak lulus atau tidak mendapat hadiah " 3. Tentukan negasi atau ingkaran dari pernyataan majemuk "Hari ini hari senin dan minggu depan bukan hari rabu". Penyelesaian *. Kita ubah menjadi simbol-simbol $\underbrace{\text{Hari ini hari senin}}_{p} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{minggu depan bukan hari rabu}}_{\sim q} \, \equiv p \, \wedge \sim q $ . Artinya $ p $ mewakili Hari ini hari senin $ \sim q $ mewakili ia lulus. *. Negasi dari $ p \, \wedge \sim q $ $ \sim p \, \wedge \sim q \equiv \sim p \, \vee \sim \sim q \equiv p \, \vee q $ Dibaca "Hari ini bukan hari senin atau minggu depan hari rabu " 4. Tentukan negasi atau ingkaran dari pernyataan majemuk "Jika Anton cukup umur dan cerdas, maka ia akan menjadi juara olimpiade matematika". Penyelesaian *. Kita ubah menjadi simbol-simbol Jika $\underbrace{\text{Anton cukup umur}}_{p} \, \underbrace{\text{dan}}_{ \wedge} \, \underbrace{\text{Anton cerdas}}_{q} \, $ maka $ \, \underbrace{\text{ia akan menjadi juara olimpiade matematika}}_{r} \, \equiv p \, \wedge q \Rightarrow r $ . Artinya $ p $ mewakili Anton cukup umur $ q $ mewakili Anton cerdas. $ r $ mewakili ia akan menjadi juara olimpiade matematika. *. Negasi dari $ p \, \wedge q \Rightarrow r $ $ \sim p \, \wedge q \Rightarrow r \equiv p \, \wedge q \wedge \sim r $ Dibaca "Anton cukup umur dan cerdas dan ia tidak akan menjadi juara olimpiade matematika ". Demikian pembahasan materi Negasi atau Ingkaran Pernyataan Majemuk dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan logika matematika yaitu "penarikan kesimpulan".
tentukan negasi dari pernyataan majemuk berikut